
^80/.5

W6
no .80

NOAA Technical Memorandum ERL WPL-80

0FCa

s^tes o*

THE FREQUENCY SHIFT OF A PULSE BY A TIME-INDEPENDENT, 
DISPERSIVE, LOSSY MEDIUM

R. M. Jones

Wave Propagation Laboratory 
Boulder, Colorado 
September 1981

noaa
NATIONAL OCEANIC AND 

ATMOSPHERIC ADMINISTRATION
Environmental Research 

Laboratories



Qt
ms
mXo

NOAA Technical Memorandum ERL WPL-80

THE FREQUENCY SHIFT OF A PULSE BY A TIME-INDEPENDENT, 
DISPERSIVE, LOSSY MEDIUM

R. M. Jones

Wave Propagation Laboratory 
Boulder, Colorado 
September 1981

*A
T»

O
N

A
i

^qatmos^

Of C<

UNITED STATES 
DEPARTMENT OF COMMERCE

Malcolm Baldrige.
Secretary

NATIONAL OCEANIC AND 
ATMOSPHERIC ADMINISTRATION

John V. Byrne,
Administrator

Environmental Research 
Laboratories

George H. Ludwig
Director 

JAN 1 5 1982
;

N.OAA ■
- . m -v.>m

JbJBR * f?Y
~

82 00i93





CONTENTS

Page

1. SUMMARY 1

2. BACKGROUND 3

3. QUALITATIVE SUMMARY OF RESULTS 6

4. THE RELATION BETWEEN THE IMAGINARY PART OF n' AND THE
FREQUENCY DEPENDENCE OF LOSSES 8

5. THE FREQUENCY SHIFT OF A PULSE 9

6. EXAMPLE — A GAUSSIAN-SHAPED PULSE 11

7. INHOMOGENEOUS MEDIA 12

8. BENDING OF A BEAM IN A LOSSY HOMOGENEOUS MEDIUM 13

9. ACKNOWLEDGMENT 14

10. REFERENCES 15

iii



THE FREQUENCY SHIFT OF A PULSE BY A TIME-INDEPENDENT, 
DISPERSIVE, LOSSY MEDIUM

R.M. Jones

ABSTRACT

It is shown that a pulse undergoes a frequency shift while propa
gating through a medium whose losses depend on frequency. The amount 
of the frequency shift is proportional to the imaginary part of the 
complex group refractive index and the distance traveled in the medium. 
No new frequencies are generated that were not in the original signal; 
the signal energy is merely "redistributed" by selective absorption.
In an inhomogeneous medium, the frequency shift is proportional to the 
imaginary part of the complex group path. Furthermore, a beam propa
gating in a medium where the losses depend on the direction of propaga
tion will be bent toward the direction of least attenuation. Again, no 
new components in the angular spectrum are generated that were not in 
the original beam. The signal energy is merely redistributed by selec
tive absorption.

1. SUMMARY

When a wave pulse propagates through a medium in which the attenuation 
depends on the frequency, the pulse spectrum is attenuated faster on one side than 
on the other. The farther the pulse propagates into the medium, the more the 
frequency is shifted.

This selective absorption might be interpreted as an effective Doppler 
shift of the pulse, even though the medium is time-independent. The effect 
depends partly on the time—dependence of the pulse; the effect vanishes for 
a monochromatic wave.



The imaginary part of the complex group refractive index

n- = ^ (no)) = ^ ((y-ix)w)

is proportional to the frequency derivative of the absorption coefficient 
— x» and is thus a quantitative measure of this effect.

In an inhomogeneous medium, the imaginary part of the complex group path

P' = d^ (U) / n * d3)

measures the cumulative effect of the frequency shift just as the real part 
of P1 gives the time of travel of the pulse.

Analogously, a beam that propagates in a medium that has angle-dependent 
losses will have its wave-normal direction shifted. This would be interpreted 
as an effective bending of the beam, even though the medium is homogeneous. The 
effect depends partly on the spatial inhomogeneity of the beam; the effect vanishes 
for a plane wave.

As a particular example, the frequency shift of a time-harmonic wave modulated 
by a Gaussian-shaped envelope is inversely proportional to the square of the pulse 
length in addition to being proportional to the imaginary part of the complex group 
refractive index and the distance traveled through the medium.

It is important to notice that all of the above effects are linear. That is, 
no new frequencies are generated that were not in the original signal. The signal 
energy is merely "redistributed" in frequency by selective absorption.

John Bennett (1974, page 1583) announced these results as a private communi
cation from M. Jones. Here I document the results in full.
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2. BACKGROUND

The propagation of pulses in lossless media is well understood (e.g., Stratton, 
1941; Hines, 1951a; Panofsky and Phillips, 1955; Jeffreys and Jeffreys, 1956; 
Brillouin, 1960; Whitham, 1960; Budden, 1961; Jackson, 1962; Lighthill, 1965), in
cluding both isotropic and anisotropic media, in cases of anomalous dispersion 
where the group velocity no longer gives the velocity of energy flow, and the 
behavior of the precursor. For cases of normal dispersion, the velocity of energy 
flow is the same as the group velocity,

9(0v (1)g 9k

(Here, co is the radian frequency, |k| = 2tt/X is the wave number, and k is normal
to the phase fronts.)

In general, a pulse changes shape as it propagates. There is, then, no single 
velocity that describes its motion. Under conditions of normal dispersion, the 
group velocity (1) gives the velocity of propagation of the pulse peak. However, 
the complete calculation of the propagation of a pulse requires a calculation of 
the change in shape as well. The method is straightforward, although often diffi
cult in practice. A Fourier transform is performed on the initial pulse, the 
propagation of each Fourier component is found, and an inverse Fourier transform 
is taken to find the amplitude and phase of the signal as a function of time and 
position. Under conditions of normal dispersion, the inverse transform can often 
be evaluated by asymptotic methods (Jeffreys and Jeffreys, 1956; Price, 1968;
Felsen, 1969). With care, the results are unambiguous.

Many investigators have calculated the propagation of pulses of various 
shapes under various situations and calculated various aspects of the resulting 
distortion to the pulse (e.g., Felsen, 1969; Nicolis, 1967 (for a bell-shaped 
pulse); Wait, 1969a (exponential and bell-shaped pulse); Wait, 1969b (an example 
with a bell-shaped pulse that can be evaluated exactly); Vogler, 1969 (Gaussian- 
shaped pulse); Wait, 1970a (Gaussian-shaped pulse); Wait, 1970b (propagation of a 
Gaussian-shaped pulse over flat, imperfectly conducting earth); Wait, 1970c (Gaussian- 
shaped pulse); Vogler, 1970a, 1970b (Gaussian-shaped pulse)).
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The propagation of pulses in lossy media is less well understood. The main 
difficulty arises from trying to interpret the significance of the group velocity 
in (1) when it takes on complex values. Booker (1939) suggested that, since a 
pulse is made up of a spectrum of frequencies, a complex frequency might be found 
in the spectrum that would make the group velocity real. Hines (1951 a,b) showed 
that the velocity of the spatial maximum and the time maximum of a pulse do not 
usually coincide in a lossy medium. He argued that the velocity of the time maximum 
is more closely related to what is actually measured. He showed that

u = real(n') (2)

gives the velocity of the time maximum of a pulse, where

(noo) = ^ ((y-ix)w) (3)n' = du)

is the complex group refractive index (Budden, 1961). (Here n is the complex 
phase refractive index [with real part y, and imaginary part - and c is the 
free-space speed of light.)

Furutsu (1952), apparently unaware of Hines' work, argued that the concept 
of group velocity and wave path do not exist in a lossy medium.

Suchy (1972 a,b,c, 1974) uses different arguments from Hines' to advocate 
real (3w/3k) as a more appropriate group velocity. Suchy (1972a) argues that 
imaginary (3w/3k) has no apparent physical meaning. Suchy (1974) interprets it 
in terms of a directional derivative of the real part of the wave number.

The difficulty with interpreting a complex group velocity is similar to that 
of interpreting the complex ray direction that occurs for ray tracing in complex 
space (Poeverlein, 1962; Budden and Jull, 1964; Jones, 1970; Budden and Terry, 
1971; Keller and Streifer, 1971; Bertoni et al., 1971; Deschamps, 1972; Kratsov 
et al., 1974; Wang and Deschamps, 1974; Bennett, 1974; Connor and Felsen, 1974).

The seemingly peculiar behavior of wave propagation in dissipative media has 
led various investigations into various aspects. For example, Hines (1951 c,d)
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and Arsaev and Kinber (1968) consider the direction of energy flux in dissipative 
media. Poeverlein (1962) pointed out that absorption of waves can be represented 
by complex propagation vectors. Storey and Roehner (1970) and Roehner (1971) 
consider the direction of stationary phase for a beam of waves in an absorbing 
medium. Bertoni et al., (1971) consider the nonlocal nature of propagation in 
lossy media. Batorsky and Felsen (1971) consider complex waveguide modes. Denman 
and Buch (1973) derive a Hamiltonian for dissipative systems.

The practical calculation of the propagation of pulses in lossy media is 
not hindered by difficulties in interpreting a group velocity that takes on com
plex values. The method is the same as for lossless media, and the results for 
the amplitude and phase of the resulting signal as a function of time and position 
are just as unambiguous as for the lossless case.

Several investigators have calculated various aspects of pulse distortion 
in lossy media. Vogler (1969) calculated envelope shape distortion of a pulse 
propagating in a lossy troposphere. Vogler (1970a and b) considered pulse dis
tortion further. Wait (1970b) considered pulse distortion for propagation over a 
flat, imperfectly-conducting earth.

One particular aspect of the distortion of a pulse as it propagates through 
a lossy medium, that of the frequency shift of the carrier and the relation to 
the frequency dependence of losses and to the imaginary part of the complex group 
refractive index, does not seem to have received attention. John Bennett (1974), 
however, reported the result in the special issue of Proceedings IEEE on rays and 
beams, referring to some of my unpublished work. In the same issue, Connor and 
Felsen (1974), apparently independently, derive the same result for the case of a 
Gaussian-shaped pulse, but do not mention the relation to the imaginary part of 
the group refractive index.

As we shall see, the above frequency shift is proportional to the product of 
the imaginary part of the group refractive index and the distance traveled in 
the medium. This discovery complements the already-known relation between the 
time of travel of a pulse and the product of the real part of the group refractive 
index and the distance traveled in the medium.
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Section 3 illustrates the main results in a qualitative way. Section 4 
establishes a quantitative relation between the imaginary part of n1 and the fre
quency dependence of losses, and Section 5 derives a relation between the fre
quency dependence of losses and a frequency shift in the spectrum of a pulse. 
Section 6 applies the results to the case of a Gaussian-shaped pulse, Section 7 
generalizes to inhomogeneous media, and Section 8 discusses the propagation of 
beams.

3. QUALITATIVE SUMMARY OF RESULTS

Suppose a wave pulse

Fig

has a certain frequency and angular spectrum.

Frequency or Angle

When such a pulse propagates through a medium in which the attenuation is a function 
of frequency and/or angle

Frequency or Angle
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the pulse spectrum will get attenuated Cor "worn away") faster on one side than 
the other.

Frequency or Angle

The result of frequency-dependent losses is that the farther the pulse pro
pagates into the medium, the more the frequency gets shifted.

Fig

This selective absorption might be interpreted as an effective Doppler shift 
of the pulse, even though the medium is time-independent. The effect depends 
partly on the time dependence of the pulse; the effect vanishes for a monochromatic 

wave.

Such a "single pulse" Doppler shift has nothing to do with the Doppler shift 
measured by the pulse-to-pulse phase shift in a Doppler radar. This effect might 
influence range measurements in an FM-CW radar, however.

The result of angle-dependent losses is that the farther the wave packet 
propagates into the medium, the more the wave-normal direction gets shifted.
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Fig

This could be interpreted as an effective bending of the wave packet, even 
though the medium is homogeneous. The effect depends partly on the spatial in
homogeneity of the wave packet; the effect vanishes for a plane wave.

4. THE RELATION BETWEEN THE IMAGINARY PART OF n' AND THE
FREQUENCY DEPENDENCE OF LOSSES

Suppose a monochromatic plane wave with frequency w travels in the z direction
through a homogeneous medium that has a complex phase refractive index n. The
time and space variation of the amplitude A of the wave is

A ei(^ = A exp(i<j> - az) = A exp(iwt - i “ z) (4)

where <J) is the phase of the wave and ot is the absorption coefficient.

To obtain an explicit expression for the frequency dependence of the phase 
and amplitude, let us take the derivative of the phase with respect to frequency,

4^ = t - — real ~~ (nto) = t - -r real (n'), (5)
do) c do) c

and the logarithmic derivative of the amplitude with respect to frequency,

h A> ■ -2 f; ■ tlmas £ (m,)' ti,na8 <n,)’ <6)
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where we have used (3) for n'. Equation C5) leads to the well-known result (2) for 
the group velocity, while (.6) gives the new result,

_ dot = imag (nV) (7)
da) c

This means that the imaginary part of the complex group refractive index is pro
portional to the frequency derivative of the absorption coefficient. Evidently, 
the group refractive index is real if and only if the absorption coefficient does 
not depend on frequency (at least at a given frequency).

5. THE FREQUENCY SHIFT OF A PULSE

Suppose we have a time-harmonic wave of frequency co^ modulated by an envelope
having one peak at t = 0:

oom(t) exp(iw t) = —/ exp(itot) A(w) exp(B((o))doj (8)
0 v^2tt -00

where

00
A(o)) exp(B(oo)) = —/ exp(-io)t) m(t) exp(io) t)dt (9)

m -co 0

is the Fourier transform of m(t) exp(ia)ot) and has been divided into a slowly 
varying part A(o)) and a quickly varying part exp(B(o))) to show its asymptotic 
behavior. Let the pulse propagate through a homogeneous medium that multiplies 
a monochromatic wave by

exp(- i ^ yz) exp(-az) (10)

where y is the real part of the phase refractive index, a is the absorption coeffi
cient, and z is the distance traveled (along the wave normal direction) through the 
medium. The spectrum of the pulse at a point z in the medium is then

9



A(to) exp(B(to) - i ^ u(to) z ” «Cw) z) . (H)

To find the dominant frequency 0) in this spectrum, we set

^ |a(oj) expCB(w) - a(w) z) 1^ = 0 . (12)

When the slowly varying term A(u)) is neglected, (12) gives

da(to )
real -j— B(to ) - z , ■ -P-- = 0 . (13)

dto p dooP P
We now expand B(to) about w = to^, where co^ is the dominant frequency of the trans
mitted pulse. That is, we expand about the point where

d B(a)..)
real —z----- - real B'Go.) = 0 . (14)dCO^ i

(Notice that if B is an analytic function, the imaginary of the above is also zero, 
so that is then a saddlepoint of the transmitted pulse.) (In many cases, = toQ.) 
The Taylor expansion gives

B(to) = BCu^) B' (w1) (to-u^) \ (15)
 B"(0)1)(0)-w1)2 +

where primes indicate derivatives with respect to the argument. Substituting (15) 
into (13) gives

d a(to )
real B"(w^)(w^ - to^) - z ^ ^ - = 0 . (16)

We have neglected second and higher powers of (to^ - to^) to give the asymptotic 
high-frequency behavior. Solving (16) for the frequency shift, (to^ - to^), gives

d a (to) imag n'(to )
5___________  ____  P iL_________ E_ (17)real B"(to,) d to c real B"(w^)1 P

We have used (7) to combine with the result of the previous section. Thus, the 
medium shifts the frequency of the pulse by an amount proportional to the distance
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traveled in the medium and proportional to the frequency derivative of the ab
sorption coefficient (and thus proportional to the imaginary part of the complex 
group refractive index). (It is probably accurate enough in most cases to use 
n'(u^) for n'(tOp) in (17).)

The physical explanation for this frequency shift is clear. If the absorption 
depends on frequency then the medium will selectively absorb either the higher or 
the lower frequencies in the pulse spectrum, thus shifting the dominant frequency 
in the spectrum. It is also clear that this frequency shift should be proportional 
to z, the distance traveled in the medium. It is also reasonable that the frequency 
shift is larger, the larger the spectral width of the pulse, which is inversely 
proportional to the real part of B", the curvature of the spectrum peak.

6. EXAMPLE — A GAUSSIAN-SHAPED PULSE

For a Gaussian-shaped pulse, let

m(t) = exp(- (t/x)2) (18)

where T is a measure of the pulse length.

(Although the Gaussian-shaped pulse is not realistic because it has no beginning, 
the propagation of the peak of a Gaussian-shaped pulse should be similar to that 
of realistic pulses with rounded peaks.)

Then from (9), the pulse shape in the frequency domain is

A (to) exp (B (to)) (to—U) ) ) (19)

and thus

2B(to) = - j- (to—tOQ) (20)
and

(21)

11



Substituting the above into (17) gives the frequency shift of the spectral peak

imag n* (co ) 
z. P - (22)0) -0)P o c t2/2

Equation (22) shows that the frequency shift is larger for shorter pulse lengths 
(i.e., a wider pulse spectrum), as we expected.

7. INHOMOGENEOUS MEDIA

For inhomogeneous media, (10) can be replaced by the transfer function

a(w) exp(- i ^ P(w)) , (23)

where a is a slowly varying function of U), and P is the phase path or phase integral 
(Budden, 1961, page 136). Thus, neglecting the slowly varying term a(w), (16) 

would be replaced by

real B"(w1)(w -u>,) + ^ imag P'(w ) = 0 , (24)
X p X C p

where

P'(u>) - ^ (u> P(w)) (25)

is the group path or equivalent path (Budden, 1961, page 280). Solving (24) gives 

the frequency shift
imag P*(up)

(26)VW1 = " c real B" (wp *

Equation (26) is a general relation that applies to propagation through any medium 
that has a transfer function of the form (23).

For example, it would apply in the ray-theory approximation to waves propagat
ing through an inhomogeneous anisotropic medium if we use

12



P = f n • ds • (27)
ray 
path

P can be called the generalized or complex phase path (Budden, 1961, pages 173,
197, 507), n is a vector pointing in the wave-normal direction and having a value 
equal to the complex phase refractive index (Budden, 1961, page 531), s is the 
distance along the ray path, and ds is a vector pointing in the ray direction.

As another example, a full-wave reflection or transmission coefficient could 
be put into the form of (23). Then applying (26) would give the frequency shift of 
a pulse having a spectrum given by (9).

8. BENDING OF A BEAM IN A LOSSY HOMOGENEOUS MEDIUM

The results just presented show that a pulse undergoes a frequency shift 
while propagating through a medium whose losses depend on frequency. We ordinarily 
expect frequency shifts only in time-varying media, so obtaining a frequency shift 
in a stationary medium is surprising. Two conditions are necessary for this result:

1) A wave has a finite frequency spectrum.

2) The medium has frequency-dependent losses.

It is interesting to note that no new frequencies are generated that were not 
in the original signal. The signal energy is merely ’’redistributed11 by selective 
absorption.

It is tempting to ask whether these results, derived for the frequency 
spectrum of a pulse, apply to the angular spectrum of a beam. More explicitly, 
will a beam bend in a homogeneous medium having losses that depend on the propaga
tion direction of the beam? The improbable answer is yes, because components 
of the beam on one side of the angular spectrum will be attenuated faster than 
those on the other side as the beam travels through the medium, giving a curvature 
to the beam. However, the beam does not actually bend to directions where there 
was no wave energy to begin with.

13



Thus, in analogy to the above results, if the group velocity

do) (28)u dk

is complex, then the medium has losses that depend on the direction of propagation, 
and a beam propagated in such a homogeneous medium will be bent toward the direction 
of lowest attenuation.
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